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The harmonic response of tapered composite beams is investigated by using a finite
element model. Only uniaxial bending is considered. The Poisson effect is incorporated in
the formulation of the beam constitutive equations. Interlaminar stresses are evaluated by
using stress equilibrium equations. The effects of in-plane inertia and rotary inertia are also
considered in the formulation of the mass matrix. A parametric study is carried out to
investigate the influence of taper profile and taper parameter. Linearly varying thickness
variations of increasing, decreasing, decreasing–increasing and increasing–decreasing types
are considered.
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1. INTRODUCTION

Conventional metals are being replaced by fibre-reinforced composite materials in a variety
of structural components owing to their high strength-to-weight and stiffness-to-weight
ratios. Non-uniform beams, tapered and stepped, can be used to achieve a better
distribution of strength and weight and sometimes to satisfy architectural and functional
requirements. Nowadays the interest in laminated beams, uniform and non-uniform, is
growing, as they are finding a number of applications such as turbine blades, helicopter
blades, robot arms, etc. The analysis of composite structures is a complex task due to the
bending–extension coupling. These structures are very often subjected to a dynamic
environment, necessitating better understanding of the vibration characteristics. The
dynamic analysis of laminated beams is mostly restricted to eigenvalue analysis.

A review of the literature (see, e.g., reference [1]) indicates that little work has been
carried out on the finite element analysis of composite beams, compared to plates. Yuan
and Miller [2, 3] have developed beam finite elements. The models include separate
rotational degrees of freedom for each lamina, but do not require additional axial or
transverse degrees of freedom beyond those necessary for a single lamina. A set of higher
order theories, with C0 finite elements having five, six and seven degrees of freedom per
node, for the analysis of composite and sandwich beams has been presented by
Manjunatha and Kant [4]. An interlaminar stress continuity theory via the multi-layer
approach has been presented by Lee and Liu [5]. This theory satisfies the continuity
equations of both interlaminar shear stresses and interlaminar normal stresses at a
composite interface. The effect of non-uniformity has been discussed by several authors.
The paper by Karabalis and Beskos [6] contains a comprehensive list of references on the
subject. Oral [7] has formulated a three-noded finite element, with six degrees of freedom
per node, three displacements and three independent rotations, for a linearly tapered
symmetrically laminated composite beam using first order shear deformation theory. This
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element is obtained from a five-node parent element [2] by constraining the shear angle
variation along the length to be linear.

The paper by Kapania and Raciti [1] describes recent developments in the vibration
analysis of laminated composite beams. In recent years, several authors have tried to
predict the natural frequencies of laminated beams of uniform thickness. Miller and
Adams [8] studied the vibration characteristics of orthotropic clamped–free beams using
classical lamination theory. Vinson and Sierakowiski [9] have given exact solutions based
on classical lamination theory. Chen and Yang [10] and Chandrashekhara et al. [11] have
carried out the free vibration analysis of composite beams based on first order shear
deformation theory. Recently, Chandrashekhara and Bangera [12] have studied the free
vibration characteristics of laminated composite beams using a third order shear
deformation theory. They have corrected generalized force and generalized strain relations,
to consider the Poisson effect, by ignoring the forces in the y direction. This operation
involves inversion of certain matrices and is limited to the type of beam theory that one
is using. It would be appropriate to correct stress–strain relations rather than to correct
the generalized force and generalized strain relations [13].

In the present work, the dynamical behaviour of tapered composite beams subjected to
a point harmonic excitation is studied by using a finite element method. Results are
obtained with both first order and third order shear deformation theories. The Poisson
effect is incorporated by correcting stress–strain relations. The effects of in-plane inertia
and rotary inertia are also considered in the formulation of the mass matrix. Only uniaxial
bending is considered. Interlaminar stresses are evaluated using equilibrium equations. A
variety of parametric studies are conducted to demonstrate the influence of the taper on
the response.

2. FORMULATION

The following displacement equations [14] are used in obtaining one-dimensional
laminated beam equations:

U(x, z, t)= u(x, t)+ z[cx(x, t)− (4/3)(z/h)2(cx(x, t)+ 1w(x, t)/1x)],

W(x, z, t)=w(x, t). (1)

Here u and w are in-plane and lateral displacements of the middle surface, cx is the rotation
of the normal to the middle plane about the y-axis, and h is the thickness of the beam.

The strains associated with the displacements in equation (1) are

ox = o0
x + z[k1

x + z2k2
x ], gxz = g*xz + z2k*xz , (2)

where

o0
x = 1u/1x, g*xz =cx + 1w/1x, k1

x = 1cx/1x,

k*xz =−(4/h2)(cx + 1w/1x), k2
x =−(4/3h2)(1cx/1x+ 12w/1x2).

The stresses in the nth layer, the principal material axis of which is oriented at an angle
u to the x-axis, are related to the strains by the relation

sxx C11 C12 C13 0 0 C16 oxx

syy C12 C22 C23 0 0 C26 oyy

szz C13 C23 C33 0 0 C36 ozz
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txz 0 0 0 C45 C55 0 gxz

txy C16 C26 C36 0 0 C66 gxy
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If the beam is undergoing uniaxial bending and if there is no torsional loading, one can
take syy = szz = tyz = txy =0. Upon substituting in equation (3) one arrives at the following
relation which would account for Poisson effect [10]:

6sxx

txz7=$Q11

0
0

Q55% 6oxx

gxz7. (4)

Here Q11 =C*11 −C*16C*16/C*66 and Q55 =C*55. The relations for C*ij in terms of Cij are given
in reference [10].

2.1.  

The stiffness matrix is formulated by using the strain energy expression for the beam,
given by

U= 1
2 gvol

(sxxoxx + txzgxz) d vol, U= 1
2 g

1

0

{o0}T{N0} dx, (5)

where

{o0}T = [o0
x k1

x k2
x g*xz k*

xz
], {N0}T = [Nx Mx Px Qxz Rxz ].

Upon expressing the generalized stress vector as {N0}=[D]{o0} and substituting in
equation (5), the expression for the strain energy becomes

U= 1
2 g

1

0

{o0}T[D]{o0} dx, (6)

where

A11 B11 E11 0 0

B11 D11 F11 0 0
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(Aij , Bij , Dij , Eij , Fij , Hij)= b s
nl

k=1 g
hk

hk−1

Qij(1, z, z2, z3, z4, z5) dz.

Taper is considered for the thickness with the width of the beam kept constant. Only
symmetrically tapered beams of rectangular cross-section are considered. Different tapered
beams are obtained from a uniform beam by altering the thickness of each layer along
the length and keeping its length, width and volume constant. For a tapered beam defined
by a function f(x) and for any particular taper parameter b, the thickness hk of the kth
layer at any distance x can be calculated by using the relation

hk =(h1)k{1− bf(x)}, (7)

where b is the taper parameter, =(1− h2/h1), h1 is the maximum half-thickness of the
tapered beam, h2 is the minimum half-thickness of the tapered beam and f(x) is a function
defining the taper profile. In equation (7) the only unknowns are (h1)k , which can be
calculated by equating the volume enclosed between the kth interface (or face) and the
middle surface of the tapered beam to the corresponding volume of the uniform beam.
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T 1

Comparison of natural frequencies (kHz) of a simply supported orthotropic (0°)
graphite–epoxy beam

Mode CLT FSDT Present HSDT Present
L/h no. [9] [11] FSDT [12] HSDT

120 (L=762 mm) 1 0·051 0·051 0·051 0·051 0·051
2 0·203 0·203 0·202 0·202 0·202
3 0·457 0·454 0·452 0·453 0·454
4 0·812 0·804 0·798 0·799 0·804
5 1·269 1·262 1·236 1·238 1·252

15 (L=381 mm) 1 0·813 0·755 0·753 0·756 0·754
2 3·250 2·548 2·545 2·554 2·555
3 7·314 4·716 4·714 4·742 4·753
4 13·002 6·960 7·021 7·032 7·052
5 20·316 9·194 9·201 9·355 9·382

2.2.  

The expression for the kinematic energy may be written as

T= 1
2 gvol

r(U� 2 +W� 2) d vol. (8)

2.3.  

For the finite element formulation a two-node beam element with four degrees of
freedom [uj wj (1w/1x)j cxj ] per node is used. For this configuration the generalized
displacements are interpolated by using expressions of the form

u(x, t)= s
2

j=1

uj(t)Nj(x), cx(x, t)= s
2

j=1

cxj(t)Nj(x),

w(x, t)= s
2

j=1

{wj(t)zj(x)+ (1w(t)/1x)jjj(x)}, (9)

where Nj are the Lagrange linear interpolation functions, whereas zj(x) and jj(x) are
Hermite cubic interpolation functions. By using equation (9) the generalized strains can
be expressed as

{e0}=[B]{de}, (10)

T 2

Tip displacements of the tapered isotropic beam (in)

Bending Stretching
ZXXXXXXXCXXXXXXXV ZXXXXXXXXXCXXXXXXXXXV

Present Present Present Present
D/d Reference [8] HSDT FSDT Reference [7] HSDT FSDT

2 0·02729 0·02782 0·02780 0·23077E−03 0·2310E−03 0·2310E−03
5 0·04789 0·04856 0·04854 0·32609E−03 0·3350E−03 0·3350E−03
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T 3

Comparison of non-dimensional dynamic displacements of a simply supported isotropic beam
of uniform thickness

x=L/4 x=L/2
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

Mode Present Present Present Present
no. Reference [15] HSDT FSDT Reference [15] HSDT FSDT

1 100 97·47 99·98 141·40 137·84 141·38
2 12·50 12·58 12·49 — 0·1191 0·1524
3 1·2350 1·2608 1·2325 1·746 1·7821 1·7421

where [B] is the matrix of shape functions and their derivatives and {de} is the nodal
displacement vector. The element stiffness matrix [K ]e can be obtained by substituting
equation (10) in equation (6), whereas the element mass matrix [M]e can be obtained by
substituting equation (9) in equation (8):

[K ]e =g
1

0

[B]T[D][B] dx, [M ]e =g
1

0

[N]T[r][N] dx.

Here [N] is the matrix of shape functions and its derivatives.

2.4.   

The natural frequencies are obtained by solving the eigenvalue problem

[K ]{d}=v2[M ]{d}, (11)

where [K ] and [M ] are the global stiffness and the global mass matrices respectively, d is
the corresponding eigenvector and v is the natural frequency.

For a small amount of structural damping, the steady state response of a beam subjected
to harmonic excitation is given by

[Kd ]{U}= {F}, (12)

where [Kd ] is the dynamic stiffness matrix given by

[Kd ]= [K ](1+ hi)−V2[M ],

T 4

Normalized results for a simply supported [0/90/0] beam under sinusoidal loading

L/h=4 L/h=20 L/h=40
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

w txz sz w txz sz w txz sz

Present 2·700 1·610 0·5086 0·6024 8·882 0·4944 0·5336 17·82 0·4939
HSDT
Present 2·411 1·800 0·500 0·5867 9·002 0·5000 0·5296 18·00 0·5000
FSDT
Reference [5] 2·887 1·431 0·4988 0·6172 8·749 0·5001 0·5367 17·63 0·5000
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Figure 1. A straight uniform composite beam.

in which {F} is the force vector consisting of the amplitudes of the nodal forces, {U} is
the displacement vector, V is the frequency of excitation and h is the structural damping
factor.

The dynamic displacements {U} obtained from equation (12) are then used to obtain
dynamic in-plane stresses by using equations (2), (4) and (9).

2.5.     

It is to be noted that in the case of ESL theories the transverse stresses evaluated by
using constitutive equations are not correct. The transverse stresses can be determined with
reasonable accuracy from the following stress equilibrium equations in the absence of body
forces:

1sxx/1x+ 1txz/1z=0, 1szz/1z+ 1txz/1x=0. (13)

To evaluate the transverse stresses through the thickness the above equilibrium equations
are transformed into appropriate finite difference expressions [15]. Since the dynamic
in-plane stress can be evaluated at any point across the thickness with reasonable accuracy,
transverse stresses at any point across the thickness can be evaluated by using a finite

Figure 2. Different taper profiles.
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T 5

Non-dimensionalized frequencies (v*) of various taperes SS beams

Mode 1 Mode 2 Mode 3
Type of ZXXXCXXXV ZXXXCXXXV ZXXXXCXXXXV
beam b HSDT FSDT HSDT FSDT HSDT FSDT

I 0·0 2·4977 2·4961 8·4863 8·4701 15·8082 15·7478

II 0·25 2·4815 2·4798 8·4650 8·4488 15·7758 15·7142
0·50 2·4065 2·4054 8·3671 8·3514 15·6168 15·5575
0·75 2·1787 2·1776 8·0541 8·0418 15·1074 15·0559

III 0·25 2·4815 2·4798 8·4650 8·4488 15·7758 15·7142
0·50 2·4065 2·4054 8·3671 8·3514 15·6168 15·5575
0·75 2·1787 2·1776 8·0541 8·0418 15·1074 15·0559

IV 0·25 2·3606 2·3595 8·4298 8·4135 15·8015 15·7411
0·50 2·0902 2·0897 8·1885 8·1728 15·7623 15·7052
0·75 1·5120 1·5164 7·4591 7·4451 15·7209 15·6767

V 0·25 2·5823 2·5812 8·4410 8·4247 15·7898 15·7271
0·50 2·6175 2·6170 8·2148 8·1986 15·6996 15·6381
0·75 2·5050 2·5050 7·5028 7·4888 15·3778 15·3212

I, Uniform beam; II, increasing type; III, decreasing type; IV, decreasing–increasing type;
V, increasing–decreasing type.

difference technique. The central difference technique is used across the thickness and the
forward difference technique is used along the length.

3. RESULTS AND DISCUSSION

A number of examples have been considered. Unless mentioned otherwise, the following
AS4/3051-6 graphite-epoxy material properties are used: E1 =144·80 GPa; E2 =9·65 GPa;

T 6

Maximum displacement (w*) values for various tapered SS beams subjected to harmonic
excitation

Type Mode 1 Mode 2 Mode 3
of ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

beam† b HSDT FSDT HSDT FSDT HSDT FSDT

I 0·0 49·95 21 49·93 21 6·122 11 6·116 11 1·248 21 1·252 21

II 0·25 53·47 20 53·44 20 6·860 11 6·854 11 1·298 7 1·303 7
0·50 61·98 19 61·93 19 8·268 10 8·262 10 1·387 7 1·394 7
0·75 88·64 17 88·53 17 11·62 9 11·61 9 1·443 6 1·459 6

III 0·25 48·23 22 48·20 22 6·155 31 6·149 31 1·342 35 1·344 35
0·50 48·53 23 48·50 23 6·412 32 6·407 32 1·529 35 1·530 35
0·75 55·80 25 55·75 25 7·304 33 7·296 33 1·977 36 1·974 36

IV 0·25 59·54 21 59·48 21 6·204 11 6·198 11 1·379 21 1·380 21
0·50 83·69 21 83·50 21 6·623 12 6·618 12 1·603 21 1·598 21
0·75 189·9 21 187·9 21 8·114 13 8·100 13 2·074 21 1·993 21

V 0·25 44·17 21 44·14 21 6·174 11 6·168 11 1·281 7 1·287 7
0·50 40·21 21 40·19 21 6·549 10 6·544 10 1·348 7 1·357 7
0·75 40·43 21 40·41 21 7·947 9 7·933 9 1·460 6 1·470 6

† I–V as in Table 5.
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T 7

Maximum stresses (s*x ) for various tapered SS beams subjected to harmonic excitation

Type Mode 1 Mode 2 Mode 3
of ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

beam† b HSDT FSDT HSDT FSDT HSDT FSDT

I 0·0 39·65 20 38·82 20 14·87 10 13·73 10 5·130 7 4·343 7
0·25 42·44 18 41·58 18 16·45 10 15·27 10 5·343 7 4·606 7

II 0·50 49·18 15 48·24 15 19·40 8 18·21 8 5·673 6 5·037 6
0·75 71·58 10 70·41 10 26·82 6 25·64 6 5·860 5 5·460 5

III 0·25 38·28 23 37·51 23 14·75 31 13·70 31 5·524 34 4·756 34
0·50 38·51 26 37·79 26 15·04 33 14·11 33 6·259 35 5·535 35
0·75 45·05 31 44·34 31 16·86 35 16·11 35 8·047 36 7·403 36

IV 0·25 51·56 20 50·89 20 15·09 12 13·97 12 5·535 20 4·794 20
0·50 79·45 20 79·08 20 16·13 13 15·00 13 6·243 20 5·583 20
0·75 191·4 20 191·5 20 20·23 16 19·05 16 7·472 20 6·801 20

V 0·25 32·79 17 31·92 16 15·03 9 13·91 9 5·131 7 4·368 6
0·50 29·51 12 28·63 12 15·99 8 14·85 8 5·255 6 4·534 6
0·75 32·94 6 31·76 7 19·89 5 18·71 5 5·726 4 5·144 4

† I–V as in Table 5.

G23 =3·45 GPa; G12 =G13 =4·14 GPa; n=0·3; r=1389·23 kg/m3. The non-dimensional
parameters used in presenting results are as follows:

v=vL2zr/E1h2;

w*=
max. dynamic displacement w of a uniform or tapered beam

max. static displacement w of a uniform beam obtained with FSDT
;

s*x =
max. dynamic normal stress sx of a uniform or tapered beam

max. static normal stress sx of a uniform beam obtained with FSDT
;

t*xz =
max. dynamic shear stress txz of a uniform or tapered beam

max. static shear stress txz of a uniform beam obtained with FSDT
;

s*z =
max. dynamic normal stress sz of a uniform or tapered beam

max. static normal stress sz of a uniform beam obtained with FSDT
;

In Table 1 the natural frequencies of a simply supported orthotropic (0°) graphite–epoxy
beam are compared with existing results. The comparison is quite good. It is well known
that the classical theory overpredicts the natural frequencies of thick beams. For checking
the accuracy of the present formulation for tapered beams, linearly tapered clamped–free
isotropic beams with decreasing thickness variation and of rectangular cross-section are
analyzed for stretching and bending modes. Two beams, one with h1/h2 =2 and the other
with h1/h2 =5, were taken for analysis. The following properties were used:
E=30×106 lb/in2; n=0; L=10 in; b=1 in. The force is applied at the tip and is equal
to 1000 lb. The tip displacements are compared in Table 2. The comparison is good. To
validate the present formulation for the dynamic analysis the non-dimensional dynamic
displacements of a simply supported isotropic beam of uniform thickness subjected to a
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T 8

Maximum stresses (t*xz) for various tapered SS beams subjected to harmonic excitation

Type Mode 1 Mode 2 Mode 3
of ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

beam† b HSDT FSDT HSDT FSDT HSDT FSDT

I 0·0 30·05 0 30·12 0 21·29 0 21·54 0 10·05 0 10·34 0

II 0·25 36·31 0 36·39 0 24·19 0 24·43 0 10·45 0 10·70 0
0·50 48·89 0 48·93 0 29·32 0 29·48 0 10·90 0 11·10 0
0·75 85·41 0 84·79 0 40·61 0 40·40 0 10·57 0 10·66 0

III 0·25 32·74 41 32·82 41 21·70 41 21·91 41 10·81 41 11·06 41
0·50 38·27 41 38·32 41 22·72 41 22·84 41 12·03 41 12·18 41
0·75 53·74 41 53·39 41 25·52 41 25·37 41 14·51 41 14·46 41

IV 0·25 29·28 7 29·36 7 23·82 21 24·32 21 9·970 15 10·22 15
0·50 52·41 22 51·92 22 29·12 21 30·20 21 10·18 16 10·35 16
0·75 205·6 22 200·3 20 43·34 21 46·22 21 10·68 19 10·33 23

V 0·25 34·61 0 34·73 0 24·13 0 24·37 0 10·71 0 10·98 0
0·50 43·31 0 43·30 0 29·32 0 29·42 0 11·69 0 11·88 0
0·75 64·66 0 63·12 0 41·38 41 40·44 0 13·06 0 12·90 0

† I–V as in Table 5.

point harmonic excitation at the first three natural frequencies, are compared with the
analytical solutions given in reference [16]. The force is applied at one-quarter span. The
comparison is shown in Table 3. The non-dimensional displacement is given by
w(x)p4EI/PL3, where E is Young’s modulus, I is the moment of inertia, P is the magnitude
of the harmonic force and L is the length of the beam. The hysteretic damping constant
is taken as 0·01. The results obtained by the present formulation are in good agreement
with those in reference [15]. In Table 4 the interlaminar stresses obtained with the present

T 9

Maximum stresses (s*x ) for various tapered SS beams subjected to harmonic excitation

Type Mode 1 Mode 2 Mode 3
of ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

beam† b HSDT FSDT HSDT FSDT HSDT FSDT

I 0·0 3·532 20 3·531 20 5·107 10 5·084 10 3·537 10 3·543 10

II 0·25 3·731 17 3·728 17 5·335 30 5·333 30 3·569 30 3·583 30
0·50 4·301 10 4·282 10 5·740 28 5·740 28 3·494 28 3·522 28
0·75 11·83 1 11·70 1 6·050 26 6·052 26 2·885 26 2·935 26

III 0·25 3·364 24 3·363 24 4·913 11 4·890 11 3·701 11 3·708 11
0·50 3·256 31 3·252 31 4·452 13 4·452 13 3·866 13 3·878 13
0·75 7·443 40 7·366 40 3·803 15 3·804 15 4·066 15 4·036 15

IV 0·25 21·34 20 21·37 20 5·045 11 5·026 11 4·965 11 4·972 11
0·50 53·06 20 53·08 20 5·121 16 5·102 25 6·385 16 6·385 25
0·75 130·2 20 128·6 20 9·362 19 9·080 19 6·678 19 6·451 19

V 0·25 11·05 20 11·07 20 5·043 10 5·023 10 3·571 10 3·588 10
0·50 27·12 20 27·11 20 5·123 5 5·102 5 3·693 5 3·720 5
0·75 45·38 20 45·30 20 11·81 1 11·38 1 4·577 1 4·586 1

† I–V as in Table 5.
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Figure 3. The variation of stresses along the length of the simply supported laminated beam of increasing
thickness variation. [0/90/90/0], L/h=15. hx values: —w—w—, 0·0; —R—R—, 0·25; —W—W—, 0·5;
—Q—Q—, 0·75.

formulation for the static case are compared. The comparison shows that the present
results are in good agreement with the existing results.

3.1.    

The following discussion deals with the steady state response of simply supported
composite beams subjected to a point harmonic excitation at one-quarter span from the
left end. The beams are excited at the first three natural frequencies and the amplitude of
the load is taken to be the same in each case. For harmonic response the structural
damping factor is taken as 0·02. Different taper profiles considered are shown in Figure
2, and their mathematical expressions are given in the Appendix.

The frequency values of various tapered beams are presented in Table 5. The maximum
response values of various tapered beams subjected to harmonic excitation are presented
in Tables 6–9. The variations of the stresses, obtained with the higher order shear
deformation theory, along the length of the beam, are shown in Figures 3–6. The variation
of the interlaminar stresses txz and sz , along the length, shown in Figures 3–6, can be
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interpreted by using stress equilibrium equations. The magnitude of shear stress developed
at any section depends on the slope of sx with respect to x at that section. As the slope
of sx increases, the magnitude of the shear stress developed also increases, and vice versa.
The shear stress is zero at that section at which the slope of sx is zero. sz is zero at that
section at which the slope of txz with respect to x is zero. The magnitude of sz increases
as the slope of txz increases, and vice versa.

3.1.1. Effect of taper profile
For any particular taper parameter and for the point harmonic load acting at

one-quarter span, the transverse displacement wmax obtained with the increasing–decreasing
thickness variation is lower than that of a uniform beam, whereas the wmax obtained with
other thickness variations considered is higher than that of a uniform beam. Among all
thickness variations considered, decreasing–increasing thickness variation results in a
larger deflection. A similar trend as that observed for wmax is also observed for sx . The
maximum transverse displacement and maximum normal stress sx developed in the
decreasing beam with taper parameter less than 0·5 is slightly less than those developed

Figure 4. As Figure 3, but decreasing thickness variation.



1.0

160

40

x/L

σ z*

120

80

0.2 0.4 0.6 0.8 1.0

10

2

0.2 0.4 0.6 0.8 1.0

8

4

2

0.2 0.4 0.6 0.8

250

0

150

50

200

0

150

100

25

0

5

8

0

4

50

0

20

10

12

2

10

10

15

6

2

6

0

40200

100

8

Mode 3Mode 2Mode 1

σ x*

τ x
z*

4

6

6

30

50

8

4

20

0 0 0

.    . 574

Figure 5. As Figure 3, but decreasing–increasing thickness variation.

in a uniform beam. However, there is little change in the interlaminar stresses developed.
But for taper parameters greater than 0·5 the deflection and stresses developed in a
decreasing thickness beam are higher than those developed in a uniform beam.

For any particular taper parameter, with the exception of very low taper parameters,
txz developed in a decreasing thickness variation beam is lower than that developed for
the other thickness variations considered. At lower taper parameters the shear stress
developed in a decreasing–increasing thickness variation beam is slightly lower than that
developed for decreasing thickness variation. At higher taper parameters the shear stress
developed in beams with decreasing–increasing as well as increasing–decreasing thickness
variations is very high due to the sudden change of cross-section.

The maximum interlaminar normal stresses sz developed for both increasing and
decreasing thickness variations are more or less the same. The maximum sz developed for
decreasing–increasing and increasing–decreasing thickness variations, especially at higher
taper parameters, is very high, due to the sudden change of cross-section. There is little
variation in the maximum value of sz at higher modes for all thickness variations.
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3.1.2. Effect of taper parameter
The frequency decreases with the increase in taper parameter in cases of increasing

decreasing and decreasing–increasing thickness variations. In the case of increasing–
decreasing thickness variation, the frequency slightly increases as the taper parameter
increases for 0 Q bQ 0·5 and then decreases for bq 0·5. As far as free vibration is
concerned, the behaviours for increasing and decreasing thickness variations are the same
and hence the frequencies obtained for increasing and decreasing thickness variations are
the same.

The maximum transverse displacement wmax increases with the increase in taper
parameter in the case of decreasing, increasing and decreasing–increasing thickness
variations. However, in the case of increasing–decreasing thickness variation wmax decreases
with an increase in the taper parameter for 0Q bQ 0·5 and for a taper parameter greater
than 0·5 there is a slight increase in wmax as the taper parameter increases.

A similar trend as that observed in the wmax variation with taper parameter is also
observed in the variation of the maximum value of sx . The maximum values of the

Figure 6. As Figure 3, but increasing–decreasing thickness variation.
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interlaminar stresses developed increase with the increase in taper parameter. The
deflections and stresses induced are very high for taper parameters well above 0·5. The
introduction of taper results in the development of an interlaminar normal stress sz at the
free edges.

4. CONCLUSIONS

A number of results have been presented to show the effect of the taper profile and the
taper parameter on the harmonic response of laminted composite beams. The validity of
the present results has been established by comparisons with existing results. Comparison
of results shows that there is little deviation in the results predicted by HSDT and FSDT.
The introduction of taper results in the development of interlaminar normal stress at the
free edges. Despite some minor advantages gained in the cases of decreasing and
increasing–decreasing variations, there is little advantage to be gained for tapered beams
with simply supported boundary conditions.
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APPENDIX: FUNCTIONS FOR THE VARIOUS THICKNESS VARIATIONS
CONSIDERED

Linear, increasing,

f(x)=1− x/L;

linear, decreasing,

f(x)= x/L;

linear, increasing–decreasing,

f(x)=2x/L, for 0E xEL/2,

f(x)=2(1− x/L), for L/2E xEL;

linear, decreasing-increasing

f(x)=1−2x/L, for 0E xEL/2,

f(x)=−(1−2x/L), for L/2E xEL;

parabolic, increasing,

f(x)=1−(x/L)2;

parabolic, decreasing,

f(x)=1−(1− x/L)2;

parabolic, decreasing–increasing,

f(x)=1−(2x/L−1)2;

parabolic, increasing–decreasing,

f(x)= (1−2x/L)2.


